Day 08

Denavit-Hartenberg

Denavit-Hartenberg Forward Kinematics

- RPP cylindrical manipulator
- http://strobotics.com/cylindrical-format-robot.htm
- http://strobotics.com/robodem.htm

Denavit-Hartenberg Forward Kinematics

Figure 3.7: Three-link cylindrical manipulator.

Step 1: Choose the z-axis for each frame

 recall the DH transformation matrix$$
\begin{aligned}
& T_{i}^{i-1}=R_{z, \theta_{i}} T_{z, d_{i}} T_{x, a_{i}} R_{x, \alpha_{i}} \\
&=\left[\begin{array}{|c|c|c}
{\left[\begin{array}{c}
c_{\theta_{i}} \\
s_{\theta_{i}} \\
0
\end{array}\right.} \\
\hline 0 & -s_{\theta_{i}} c_{\alpha_{i}} \\
c_{\theta_{i}} c_{\alpha_{i}} \\
s_{\alpha_{i}}
\end{array}\right] \\
& 0 \begin{array}{c}
s_{\theta_{i}} s_{\alpha_{i}} \\
c_{i} s_{\theta_{i}} c_{\theta_{i}} \\
c_{\alpha_{i}}
\end{array} \\
& a_{i} s_{\theta_{i}} \\
& d_{i} \\
& \hat{x}_{i}^{i-1} \hat{y}_{i}^{i-1}
\end{aligned}
$$

Step 1: Choose the z-axis for each frame

 $\hat{z}_{i} \equiv$ axis of actuation for joint $i+1$link i

link i

joint $i+1$

Step 1: Choose the z-axis for each frame

- Warning: the picture is deceiving. We do not yet know the origin of the frames; all we know at this point is that each z_{i} points along a joint axis

Step 2: Establish frame $\{0\}$

- place the origin o_{0} anywhere on z_{0}
- often the choice of location is obvious
- choose x_{0} and y_{0} so that $\{0\}$ is right-handed
- often the choice of directions is obvious

Step 2: Establish frame $\{0\}$

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

- using frame $\{i-1\}$ construct frame $\{i\}$

म DHI: x_{i} is perpendicular to z_{i-1}

- DH2: x_{i} intersects z_{i-1}
- 3 cases to consider depending on the relationship between z_{i-1} and z_{i}

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

- Case I
- z_{i-1} and z_{i} are not coplanar (skew)

α_{i} angle from z_{i-1} to z_{i} measured about x_{i}

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

Case 2

- z_{i-1} and z_{i} are parallel $\left(\alpha_{i}=0\right)$

b notice that this choice results in $d_{i}=0$

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

Case 3

- z_{i-1} and z_{i} intersect $\left(a_{i}=0\right)$

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

Step 3: Iteratively construct $\{1\},\{2\}, \ldots\{n-1\}$

Step 4: Place the end effector frame

Figure 3.5: Tool frame assignment.

Step 4: Place the end effector frame

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

- a_{i} : distance between z_{i-1} and z_{i} measured along x_{i}
- α_{i} : angle from z_{i-1} and z_{i} measured about x_{i}
- d_{i} : distance between o_{i-1} to the intersection of x_{i} and z_{i-1} measured along z_{i-1}
- θ_{i} : angle from x_{i-1} and x_{i} measured about z_{i-1}

Step 5: Find the DH parameters

Figure 3.7: Three-link cylindrical manipulator.

