Day 08

Denavit-Hartenberg

1/20/2013

Denavit-Hartenberg Forward Kinematics

RPP cylindrical manipulator

- http://strobotics.com/cylindrical-format-robot.htm
- http://strobotics.com/robodem.htm

PLAY

Denavit-Hartenberg Forward Kinematics

How do we place the frames?

Figure 3.7: Three-link cylindrical manipulator.

Step 1: Choose the z-axis for each frame

recall the DH transformation matrix

$$T_{i}^{i-1} = R_{z,\theta_{i}} T_{z,d_{i}} T_{x,a_{i}} R_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\hat{x}_{i}^{i-1} \quad \hat{y}_{i}^{i-1} \quad \hat{z}_{i}^{i-1}$$

Step 1: Choose the *z*-axis for each frame $\hat{z}_i \equiv axis$ of actuation for joint i+1

Step 1: Choose the z-axis for each frame

• Warning: the picture is deceiving. We do not yet know the origin of the frames; all we know at this point is that each z_i points along a joint axis

Step 2: Establish frame {0}

- place the origin o_0 anywhere on z_0
 - often the choice of location is obvious
- choose x_0 and y_0 so that $\{0\}$ is right-handed
 - often the choice of directions is obvious

Step 2: Establish frame {0}

- using frame {i-1} construct frame {i}
 - DHI: x_i is perpendicular to z_{i-1}
 - **DH2:** x_i intersects z_{i-1}
- 3 cases to consider depending on the relationship between z_{i-1} and z_i

Case I

• z_{i-1} and z_i are not coplanar (skew)

• α_i angle from z_{i-1} to z_i measured about x_i

Case 2

▶ z_{i-1} and z_i are parallel ($\alpha_i = 0$)

• notice that this choice results in $d_i = 0$

Case 3

▶ z_{i-1} and z_i intersect ($a_i = 0$)

Step 4: Place the end effector frame

Step 4: Place the end effector frame

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

- a_i : distance between z_{i-1} and z_i measured along x_i
- α_i : angle from z_{i-1} and z_i measured about x_i
- d_i: distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}
- θ_i : angle from x_{i-1} and x_i measured about z_{i-1}

Step 5: Find the DH parameters

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

* joint variable

Figure 3.7: Three-link cylindrical manipulator.